
Adaptive Nearest Neighbor 
Classification and Regression 

Based on Decision Trees

slides by 
George Chen 

Carnegie Mellon University 
Fall 2017



NN and Kernel Classification 
and Regression





GMT Time (June 27, 2012)

06:00 08:00 10:00 12:00 14:0007:00 09:00 11:00 13:00 15:00
0

50Tweet 
Rate

News Activity for #Barclays



GMT Time (June 27, 2012)

06:00 08:00 10:00 12:00 14:0007:00 09:00 11:00 13:00 15:00
0

50
#Barclays 

will go viral12:03

News Activity for #Barclays

Tweet 
Rate



GMT Time (June 27, 2012)

06:00 08:00 10:00 12:00 14:0007:00 09:00 11:00 13:00 15:00
0

50

100

150

Tweet 
Rate

News Activity for #Barclays

#Barclays 
has gone viral!12:49

#Barclays 
will go viral12:03

How we did this: weighted majority voting
Chen, Nikolov, and Shah. A Latent Source Model for Nonparametric Time Series Classification. 

NIPS 2013.



Weighted Majority Voting

0.80.10.5

Training data

Red = viral
Blue = not viral

Test data
Election results 
Viral: 1.3 votes 
Not viral: 0.1 votes

Compute similarities



Weighted Majority Voting

0.80.10.5

Training data

Red = viral
Blue = not viral

Test data
Election results 
Viral: 1.3 votes 
Not viral: 0.1 votes

Compute similarities

Nearest neighbor

Election results 
Viral: 0.8 votes 
Not viral: 0.0 votes

Nearest Neighbor Classification



NN Classification Variants
• k-NN classification: consider k most similar training data 

to test data point

• Unweighted: when tallying up votes, have each of the k 
nearest neighbors have an equal vote of 1 
(usually k-NN classification refers to unweighted case)

• Weighted: when tallying up votes, use the similarities 
that we computed

• Fixed-radius near neighbor classification: consider all 
training data at least some similarity threshold close to test 
data point (i.e., use all training data distance ≤ h away)
• Once again, can use weighted or unweighted votes



Regression: Each label is 
continuous instead of discrete



Kernel Regression

0.80.10.5

Training data

Test data

Compute similarities

Label: -1Label: 3 Label: 4

Predicted label:
(3)(0.5) + (−1)(0.1) + (4)(0.8)

0.5 + 0.1 + 0.8

Weighted average instead of weighted majority vote



NN Regression

0.80.10.5

Training data

Test data

Compute similarities

Label: -1Label: 3 Label: 4

Predicted label: 4

Nearest neighbor
Just like classification: k-NN and fixed-radius NN variants, 

also weighted and unweighted



“Adaptive” nearest neighbors: 
learn the similarity function



Decision Trees



Example Made-Up Data

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic



Example Decision Tree

Age > 40?

Weight > 200?Age > 30?

no yes

no yes no yes

diabeticnot 
diabetic

diabeticnot 
diabetic



Learning a Decision Tree

• Many ways: general approach actually looks a lot like 
divisive clustering but accounts for label information

• I’ll show one way (that nobody actually uses in practice) but 
it’s easy to explain



Learning a Decision Tree

Age (years)

Weight (lb)

4030 5020

100

200

300

1. Pick a random feature 
(either age or weight)

2. Find threshold for which red and blue are as “separate as 
possible” (on one side, mostly red; on other side, mostly blue)

210

Red: diabetic 
Blue: not diabetic



Learning a Decision Tree

Age (years)

Weight (lb)

4030 5020

100

200

300

Within each side, recurse until a 
termination criterion is reached!

Example termination criteria: ≥90% points within region has same label, 
number of points within region is <5

210
35

145 3929

Note: label within each region is majority vote

Red: diabetic 
Blue: not diabetic



Decision Tree Learned
Weight > 210?

Age > 35?Weight > 145?

no

diabeticnot 
diabetic

not 
diabetic

Age > 39?

Age > 29?

yes

no yes no yes

not 
diabetic

no yes

not diabetic
no yes

diabetic

Weight > 210?

Age > 35?Weight > 145?

Age > 39?

Age > 29?

For a new person with feature vector (age, weight), easy to predict!



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

6 leaf cells

Note: Each training data point lands in one “leaf cell”

Red: diabetic 
Blue: not diabetic



Decision Tree Learned
Weight > 210?

Age > 35?Weight > 145?

no

not 
diabetic

Age > 39?

Age > 29?

yes

no yes

not 
diabetic

no yes

not diabetic
no yes

diabetic

Weight > 210?

Age > 35?Weight > 145?

Age > 39?

Age > 29?

For a new person with feature vector (age, weight), easy to predict!

diabeticnot 
diabetic

no yes

Leaf cells in the 
feature space 
correspond to 
leaves of the 
decision tree!



Feature space sliced 
up into leaf cells

Decision Tree



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Test point

9 nearest 
neighbors

Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300
Test point

1 nearest neighbor

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

Test point
4 nearest neighbors

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Test point

9 nearest 
neighbors

Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Test point

9 nearest 
neighbors

Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)

Similarity: 1/9



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Test point

9 nearest 
neighbors

Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)

Similarity: 1/9



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Test point

9 nearest 
neighbors

Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)

Similarity: 1/9



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Test point

9 nearest 
neighbors

Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)

Similarity: 1/9



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Test point

9 nearest 
neighbors

Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)

Similarity: 0



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Test point

9 nearest 
neighbors

Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)

Similarity: 0



Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Test point

9 nearest 
neighbors

Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)

Similarity to points in same leaf cell: 1/(# training points in leaf cell) 
Similarity to points in other leaf cells: 0

Weighted majority voting using this definition of similarity precisely 
gives the prediction for this particular decision tree!

Election results 
Diabetic: 8/9 votes (winner) 
Not diabetic: 1/9 votes



Decision Tree for Classification
• Many ways to learn (some popular ways: CART, C4.5)

• Extremely easy to interpret and to do prediction

• Nearest neighbor interpretation:
• For each test point, look at leaf cell it falls into to find its 

nearest neighbors among the training data  
(note: # of nearest neighbors varies!)

• Prediction for test point: majority vote of nearest 
neighbors’ labels

• Learning a decision tree learns a similarity function (that 
depends on labels)



Decision Tree for Classification
• Many ways to learn (some popular ways: CART, C4.5)

• Extremely easy to interpret and to do prediction

• Nearest neighbor interpretation:
• For each test point, look at leaf cell it falls into to find its 

nearest neighbors among the training data  
(note: # of nearest neighbors varies!)

• Prediction for test point: majority vote of nearest 
neighbors’ labels

• Learning a decision tree learns a similarity function (that 
depends on labels)

Regression

average



Decision Forest for Classification

New test data point

Tree 1 Tree 2 Tree T…Tree 3

diabetic not 
diabetic

diabeticdiabetic

Final prediction: majority vote of the different trees’ predictions

Learn each tree 
separately using 

same training data

• Typically, a decision tree is learned with randomness 
(e.g., we randomly chose which feature to threshold)
➔ by re-running the same learning procedure, we can get 

different decision trees that make different predictions!
• For a more stable prediction, use many decision trees

This is not the only way to aggregate predictions!



Decision Forest for Classification
New test data point

Tree 1 Tree 2 Tree T…Tree 3

diabetic not 
diabetic

diabeticdiabetic

Learn each tree 
separately using 

same training data

diabetic 8/9 votes
not 
diabetic 1/9 votes

1/4 votes

3/4 votes

5/7 votes

2/7 votes

2/3 votes

1/3 votes

Final prediction: sum up votes across trees to find winner of election!
Nearest neighbor interpretation: 

For a specific test data point x and training data point xi

similarity(x , xi ) =
1
T

T∑

t=1

similarityt (x , xi )

similarity function for t-th tree
makes overall similarity 

between 0 and 1



Decision Forest for Classification
New test data point

Tree 1 Tree 2 Tree T…Tree 3

diabetic not 
diabetic

diabeticdiabetic

Learn each tree 
separately using 

same training data

average 
label for  
tree 1

Nearest neighbor interpretation: 
For a specific test data point x and training data point xi

similarity(x , xi ) =
1
T

T∑

t=1

similarityt (x , xi )

similarity function for t-th tree
makes overall similarity 

between 0 and 1

average 
label for  
tree 2

average 
label for 
tree 3

average 
label for 
tree T

Average these values to get final prediction

Regression



Decision Forest
New test data point

Tree 1 Tree 2 Tree T…Tree 3

Learn each tree 
separately using 

same training data

Combine values to get final prediction
Question: What happens if all the trees are the same?

Adding randomness can make trees more different!
• Random Forest: in addition to randomly choosing features 

to threshold, also randomize training data used for each tree
• Extremely randomized trees: further randomize thresholds 

rather than trying to pick clever thresholds

Randomly sample 
(with replacement) 

n points
n training 

data 
points

Randomizing training data 
this way is called bagging 

(bootstrap aggregating)



Boosting
I’ll only sketch the general idea

Random decision forests learned each tree separately

If some trees are bad, we still weight them equally

Boosting: learn trees sequentially, and learn 
from previous trees’ mistakes

Boosting: weight trees unequally so bad 
trees are down-weighted



Boosting

Tree 1

Where did the errors appear?

Training data

Predicted: cat, dog, shark
Actual: cat, cat, robot

Tree 2

Training data

Predicted:
Actual:

cat, cat, donkey
cat, cat, robot

Where did the errors appear?

Duplicate these training examples 
to emphasize them more when 

learning the next tree

w (1)
1 = 1 w (1)

2 = 1 w (1)
3 = 1 w (2)

1 = 1 w (2)
2 = 2 w (2)

3 = 2

Duplicate these training examples 
to emphasize them more when 

learning the next tree



Boosting

Tree 1

Training data:

Predicted:
Actual:

Tree 2

w (1)
1 , w (1)

2 , . . . , w (1)
n

x1, x2, . . . , xn

w (2)
1 , w (2)

2 , . . . , w (2)
n

x1, x2, . . . , xn

Weights: w (T )
1 , w (T )

2 , . . . , w (T )
n

x1, x2, . . . , xn

Tree T…

ŷ (T )
1 , ŷ (T )

2 , . . . , ŷ (T )
nŷ (2)

1 , ŷ (2)
2 , . . . , ŷ (2)

nŷ (1)
1 , ŷ (1)

2 , . . . , ŷ (1)
n

y1, y2, . . . , yn y1, y2, . . . , yn y1, y2, . . . , yn

Learn trees sequentially accounting for mistakes made previously

Adjust for how much each tree’s votes count

similarity(x , xi ) =
T�

t=1

�tsimilarityt (x , xi )

weight for tree t

Different ways to choose 
weights yield different 

boosting methods 
(e.g., AdaBoost, gradient 

tree boosting)Still an adaptive NN method!


